RECTANGULAR RAPID FLASHING BEACON (RRFB)
WHY?
PEDESTRIANS NEED TO CROSS
CASE STUDY: RRFB
(ST. PETERSBURG, FL)

Problem/Background

- Multi-lane, high-speed roadways
 - Conflicts at uncontrolled crosswalks
- Motorist yielding rates less than 2% at the city’s 100 uncontrolled crosswalks
- Pedestrian injury rate higher than the county/state averages
CASE STUDY: RRFB
(ST. PETERSBURG, FL)

Solution

- In 2003 city listed enhancements to uncontrolled crosswalks as top priority
- Vendor offered to install RRFB’s at two locations
 - City agreed, conducted studies
- Cost was $10,000-15,000 dollars for purchase and installation, which was less expensive than other options
Details

- Compared RRFB’s with dual overhead round yellow flashing beacons and side-mounted round flashing beacons
 - RRFBs provided higher yielding compliance
- Also compared two-beacon and four-beacon RRFB systems
- In all cases, yield markings placed 30 feet before crosswalks
Results

- Initial success led city to install 17 more RRFB’s
- Two-year review of the crosswalks
 - RRFB’s led to sustained yielding over time
- Performed equally well at night

- Four-beacon system had highest yield rates
- RRFB’s also improved yield distance
- In May 2012 City had 42 RRFBs and plans for 20-30 more
WHERE THEY’VE BEEN USED

- Mid-blocks crossings
- Uncontrolled intersection approaches
 - Does not have similar language in the MUTCD regarding use at an intersection like the PHB
 - RRFBs may control both uncontrolled legs at an intersection
- RRFBs may be used at roundabout crosswalks
- Trail crossings
“Effects of Yellow Rectangular Rapid-Flashing Beacons on Yielding at Multilane Uncontrolled Crosswalks” (Publication No. FHWA-HRT-10-043) 2010
Objective

- Examine effects of side-mounted RRFB at uncontrolled marked crosswalks for driver yielding behavior
- 22 Sites in 3 Cities
 - St. Petersburg, FL, W
 - Washington D.C
 - Mundelein, IL
- 18 Sites studied for 2 years for long-term effects
- Compare RRFB with traditional overhead yellow flashing beacon and a side-mounted traditional yellow flashing beacon
- Identify ways to further increase effectiveness of RRFB
1st compared both sides of the crosswalk (2 sets of beacons) to both sides of the crosswalk plus on the median island (4 sets of beacons).

2nd compare traditional overhead flashing beacon & traditional beacons mounted beside pedestrian signs

3rd long-term & short term effects 18 sites in St. Petersburg FL, & 3 sites in two other parts of the country respectively

4th efficacy of direct-aim technology allows RRFBs maximum brightness at particular point in roadway

5th Effects of additional RRFBs on crosswalk advance warning signs
Very high rates of motorist "yield to pedestrians"
- RRFB - Mostly high 80% & close to 100%
- 15 to 20% yield rate for standard yellow beacons

Very high yield rates sustained after 2 years operation

No identifiable negative effects have been found
- RRFB's very high compliance rates are previously unheard of for any device other than a full traffic signal and a pedestrian hybrid beacon (HAWK).
- St. Petersburg data shows drivers exhibit yielding behavior much further in advance of the crosswalk with RRFB than with standard yellow flashing beacons.
Data from locations other than St. Petersburg is limited but shows similar results

- Data from DC shows driver yielding compliance rates increased from 26% to 74% after 30 days in operation
- DC advance yielding distances increased comparable to St. Petersburg results

Study of 2 RRFB locations in Miami-Dade County, FL, reported in TRB paper – The following were significantly reduced to negligible levels:

- Evasive conflicts between drivers and pedestrians
- Percentage of pedestrians trapped in the center of an undivided road because of a non-yielding driver in the second half of the roadway
MUTCD
INTERIM APPROVAL
JULY 16, 2008
INTERIM APPROVALS VALID UNDER THE 2009 MUTCD

July 16, 2008 — Interim Approval for Optional Use of Rectangular Rapid Flashing Beacons (IA-11)

Inquiries regarding Interim Approval 11 should be sent to Bruce Friedman at Bruce.Friedman@dot.gov.

- Interim Approval (IA-11) Memorandum [HTML] [PDF, 84KB]
- St. Petersburg Experimentation Final Report [HTML] [PDF, 1.3MB]
- Florida DOT & St. Petersburg Request for Issuance of Interim Approval (excerpt) [HTML] [PDF, 347KB]
- December 9, 2009, Official Interpretation #4-376 (I) on Overhead Mounting of RRFB [HTML] [PDF, 85KB]
- August 12, 2010, Official Interpretation #4(09)-5 (I) on RRFB Use with W11-15 Sign [HTML] [PDF, 49KB]
- January 9, 2012, Official Interpretation #4(09)-17 (I) on RRFB Light Intensity [HTML] [PDF, 67KB]
- June 13, 2012, Official Interpretation #4(09)-21 (I) on Clarification of RRFB Flashing Pattern [HTML, PDF 3MB]
- August 8, 2012, Official Interpretation #4(09)-22 (I) on Flashing Pattern for Existing RRFBs [HTML, PDF 42KB]
- September 27, 2012, Official Interpretation #4(09)-24 (I) on Dimming of RRFBs during Daytime Hours [HTML, PDF 496KB]
- October 9, 2013, Official Interpretation #4(09)-37 (I) on Definition of Dimming [HTML, PDF 627KB]
- October 22, 2013, Official Interpretation #4(09)-38 (I) on RRFB Flashing Extensions and Delays [HTML, PDF 731KB]
INTERIM APPROVALS ISSUED BY FHWA

- Letter of request (on agency letterhead) - addressed to the Director of the Office of Transportation Operations, FHWA. Send electronically as an e-mail attachment to: MUTCDofficialrequest@dot.gov.

- Remember to copy the FHWA Division office
 - Indicate blanket jurisdiction-wide approval or state the location(s) where the device will be used
 - A State may request Interim Approval for all jurisdictions in their State.
Must Agree to:

- Restore site(s) of Interim Approval to a condition that complies with the provisions in the MUTCD within 3 months following the issuance of a Final Rule on TCD
- Terminate use of device or application at any time it is determined a significant safety concern is directly or indirectly attributable to the device or application
- FHWA's Office of Transportation Operations has right to terminate the Interim Approval at any time if there a safety concern
Following design & operational requirements shall apply & shall take precedence over any conflicting provisions of the MUTCD

RRFB shall consist of two rapidly & alternately flashed rectangular yellow indications having LED-array based pulsing light sources, and shall be designed, located, and operated in accordance with the detailed requirements specified.
Shall only be installed as a Warning Beacon
- see 2009 MUTCD Section 4L.03 Warning Beacon
Shall only be used to supplement a W11-2 (Pedestrian) or S1-1 (School) crossing warning sign with a diagonal downward arrow (W16-7p) plaque, located at or immediately adjacent to a marked crosswalk
Shall not be used for crosswalks controlled by YIELD or STOP signs, or traffic signals.
May be used at a crosswalk across the approach to or egress from a roundabout controlled by YIELD signs.
If sight distance approaching crosswalk is less than deemed necessary by the engineer an additional RRFB may be installed in advance of the crosswalk as a Warning Beacon to supplement a W11-2 (Pedestrian) or S1-1 (School) crossing warning sign with an AHEAD: (W16-9p) plaque.

This additional RRFB shall be supplemental to and not a replacement for RRFBs at the crosswalk itself.
For any approach on which RRFBs are used, two W11-2 or S1-1 crossing warning signs (each with RRFB and W16-7p plaque) shall be installed at the crosswalk, one on the right-hand side of the roadway and one on the left-hand side of the roadway.

- On a divided highway, the left-hand side assembly should be installed on the median, if practical, rather than on the far left side of the highway.

- An RRFB shall not be installed independent of the crossing signs for the approach the RRFB faces. The RRFB shall be installed on the same support as the associated W11-2 (Pedestrian) or S1-1 (School) crossing warning sign and plaque.
Each RRFB shall consist of two rectangular-shaped yellow indications, each with an LED-array based light source. Each RRFB indication shall be a minimum of approximately 5 inches wide by approximately 2 inches high.

The two RRFB indications shall be aligned horizontally, with the longer dimension horizontal and with a minimum space between the two indications of approximately seven inches (7 in), measured from inside edge of one indication to inside edge of the other indication.
The outside edges of the RRFB indications, including any housings, shall not project beyond the outside edges of the W11-2 or S1-1 sign.

As a specific exception to 2003 MUTCD Section 4K.01 guidance, the RRFB shall be located between the bottom of the crossing warning sign and the top of the supplemental downward diagonal arrow plaque (or, in the case of a supplemental advance sign, the AHEAD plaque), rather than 12 inches above or below the sign assembly.
Flash in a rapidly alternating "wig-wag" flashing sequence

RRFBs shall use a much faster flash rate.

Specific exception to 2003 MUTCD Section 4K.01 requirements for the flash rate of beacons

During each of its 70 to 80 flashing periods per minute, one of the yellow indications shall emit two rapid pulses of light and the other yellow indication shall emit three rapid pulses of light.
The flash rate of each individual yellow indication, as applied over the full on-off sequence of a flashing period of the indication, shall not be between 5 and 30 flashes per second, to avoid frequencies that might cause seizures.

The light intensity of the yellow indications shall meet the minimum specifications of Society of Automotive Engineers (SAE) standard J595 (Directional Flashing Optical Warning Devices for Authorized Emergency, Maintenance, and Service Vehicles) dated January 2005.
CONDITIONS OF INTERIM APPROVAL
BEACON OPERATION

- Shall be normally dark
- Shall initiate operation only upon pedestrian actuation
- Shall cease operation at a predetermined time after the pedestrian actuation or, with passive detection, after the pedestrian clears the crosswalk
- All RRFBs associated with a given crosswalk (including those with an advance crossing sign, if used) shall, when activated, simultaneously commence operation of their alternating rapid flashing indications and shall cease operation simultaneously
If pedestrian pushbuttons (rather than passive detection) are used to actuate the RRFBs, a pedestrian instruction sign with the legend PUSH BUTTON TO TURN ON WARNING LIGHTS should be mounted adjacent to or integral with each pedestrian pushbutton.
ACTUATION OPTIONS

- Push-button activated or passive detection
- If push button activated needs to be ADA compliant
 - Locator tone
 - Message should only let blind pedestrian know beacon is flashing, not when they can cross.
- Passive detection options: bollards, video, microwave
ADDITIONAL DESIGN CONSIDERATIONS
- RRFBs are **NOT** a substitute for good crosswalk placement and design.

- The Crosswalk is still the primary traffic control element that assigns ROW to the pedestrian.
 - Note that in the event a user does not activate the RRFB (assuming manual actuation) the crosswalk still assigns ROW to the pedestrian.

- RRFBs supplement the crosswalk - call attention to the crosswalk warning signs

- Pre-requisites for RRFB: Use best practices for
 - Crosswalk placement
 - Pavement markings
 - Lighting
RRFB’S ON HIGHER VOLUME & SPEED STREETS IN ST. PETERSBURG

<table>
<thead>
<tr>
<th>No.</th>
<th>Roadway</th>
<th>Location</th>
<th>Number of Lanes</th>
<th>Median Y or N</th>
<th>Peak 8-hr Volume</th>
<th>24 Hour Volume</th>
<th>Posted Speed</th>
<th>Average 85th %ile Speed</th>
<th>LAT LONG</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Park Street</td>
<td>Elbow Lane</td>
<td>5</td>
<td>N</td>
<td>10,719</td>
<td>31,133</td>
<td>40</td>
<td>47.6</td>
<td>27°47’19.13" N 82°45’09.19" W</td>
</tr>
<tr>
<td>23</td>
<td>38th Avenue N w/of</td>
<td>18th Street</td>
<td>5</td>
<td>Y</td>
<td>15,590</td>
<td>30,750</td>
<td>40</td>
<td>46.9</td>
<td>27°48’23.64" N 82°39’31.02" W</td>
</tr>
<tr>
<td>34</td>
<td>4th Street @ Sunken Gdns</td>
<td>5</td>
<td>Y</td>
<td>16,164</td>
<td>29,333</td>
<td>35</td>
<td>48.0</td>
<td>27°47’24.12" N 82°38’18.57" W</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>22nd Avenue N @</td>
<td>56th Street</td>
<td>4</td>
<td>N</td>
<td>14,675</td>
<td>25,370</td>
<td>40</td>
<td>43.0</td>
<td>27°47’30.62" N 82°42’36.48" W</td>
</tr>
<tr>
<td>29</td>
<td>37th Street N @</td>
<td>Pinellas Trail</td>
<td>4</td>
<td>N</td>
<td>13,156</td>
<td>24,282</td>
<td>35</td>
<td>47.4</td>
<td>27°45’45.83" N 82°41’00.33" W</td>
</tr>
<tr>
<td>33</td>
<td>22nd Avenue S e/of</td>
<td>40th Street</td>
<td>4</td>
<td>N</td>
<td>13,156</td>
<td>24,282</td>
<td>35</td>
<td>47.4</td>
<td>27°44’53.77" N 82°41’19.98" W</td>
</tr>
</tbody>
</table>

Since the initial “Effects of Yellow Rectangular Rapid-Flashing Beacons on Yielding at Multilane Uncontrolled Crosswalks” (Publication No. FHWA-HRT-10-043) was published in 2010, St. Petersburg has installed RRFBs in some higher-volume, higher-speed locations that test the “envelope” of where they may be applied.

Preliminary results: These have all performed well (75%+ Yield rates, no crash problem).
- All other rules for crosswalk placement and pavement marking apply (sight distance, advance stop/yield bar, lighting, clear pedestrian desire lines, etc.)
Flash duration of RRFBs should be based on the MUTCD procedures for clearance times at pedestrian signals

MUTCD: Section 4E.06 Pedestrian Intervals and Signal Phases

May allow pedestrians to actuate RRFB immediately after a flash interval has ended
A small light directed at and visible to pedestrians in the crosswalk may be integral to the RRFB or push button confirm that the RRFB is in operation.
Overhead placement is an option
 - Originally permission was for the event that the shoulder mounting would be sight-obstructed, but then granted to supplement shoulder and median mounted beacons
 - Undetermined whether or not supplemental overhead placement improves yield rate or reduces crashes
When there is a median (which is preferred for crossing multi-lane roads) a RRFB should be placed in the median
RESEARCH MEDIAN RRFB

- Standard yellow overhead beacon increased yielding compliance from 11 to 16 percent.
- Side-mounted RRFBs replaced the overhead beacon, yielding compliance increased to 78 percent.
- Adding the RRFB to the median island increased yielding compliance to 88 percent.
- Standard yellow side mounted beacons increased yielding compliance from zero to 16 percent.
- Side-mounted RRFBs increased yielding compliance to 72 percent.
ENFORCEMENT FOR NEW INSTALLATIONS

- New installations should be accompanied by education and enforcement.
- Yielding compliance should be monitored by police.
 - Exception - a new installation along a corridor with multiple beacons or in a community where RRFBs are common throughout.
 - No specific threshold or standard but a logical approach is to continue enforcement until yield rates achieve 75%.
 - Do added enforcement if yield rates drop precipitously.

If there is internet connection, click photo to go to YouTube news story of pedestrian enforcement in Orlando FL.
Easy to install since they communicate wirelessly and may be solar powered

Estimated Cost

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>Description</th>
<th>Median</th>
<th>Average</th>
<th>Min. Low</th>
<th>Max. High</th>
<th>Cost Unit</th>
<th># of Sources (Observations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing Beacon</td>
<td>RRFB</td>
<td>$14,160</td>
<td>$22,250</td>
<td>$4,520</td>
<td>$52,310</td>
<td>Each</td>
<td>3(4)</td>
</tr>
</tbody>
</table>
CASE STUDY: RRFB
(ELMWOOD PARK, NJ)

Problem/Background

- Uncontrolled crossing between a commuter parking lot and a train station on a four-lane highway
- Average pedestrian volume: 58-85 during commute hours
- Heavy traffic: 39,490 ADT and
- 35 mph speed limit
- Standard crosswalks existed
 - Signs were not consistent
- Did not meet traffic signal warrant
CASE STUDY: RRFB
(ELMWOOD PARK, NJ)

Solution

- RRFB installed on each side of the road
- Each RRFB had a fluorescent yellow-green pedestrian warning sign, a two-section beacon, and a downward-pointing arrow sign
- Signs and beacons faced both directions
- High-visibility crosswalk markings also installed
- Upon ped activation, yellow lights flashed in an alternating pattern
Results

- Increase in number of motorists stopping and decrease in number of pedestrians waiting for gap
- More successful in the morning than afternoon due to higher p.m. traffic
- Possibility of a multiple threat crash still a concern, especially with increased pedestrian confidence

<table>
<thead>
<tr>
<th>Pedestrian Crossing Events: Conflicted Crossings</th>
<th>A.M. Before</th>
<th>A.M. After</th>
<th>P.M. Before</th>
<th>P.M. After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossed after vehicle stopped</td>
<td>3</td>
<td>75</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>Percent</td>
<td>2.2%</td>
<td>52.8%</td>
<td>2.3%</td>
<td>35.8%</td>
</tr>
<tr>
<td>Waited or aborted</td>
<td>48</td>
<td>15</td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>Percent</td>
<td>35.3%</td>
<td>10.6%</td>
<td>47.7%</td>
<td>40.6%</td>
</tr>
<tr>
<td>Hurried or went around vehicle</td>
<td>17</td>
<td>12</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Percent</td>
<td>13.5%</td>
<td>8.5%</td>
<td>10.5%</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

Pedestrian Behavior Before and After Installation of RRFB
QUESTIONS / RESOURCES

- Effects of Yellow Rectangular Rapid-Flashing Beacons on Yielding at Multilane Uncontrolled Crosswalks” (Publication No. FHWA-HRT-10-043) 2010

- MUTCD Interim Approvals
 - RRFB Specific

- Before-and-after study of the effectiveness of rectangular rapid-flashing beacons used with school sign in Garland, Texas

- Driver-Yielding Results for Three Rectangular Rapid-Flash Patterns
 - http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/TTI-2014-5.pdf