Rail Station Access is key to increasing rail ridership. The completion of the first phase of the region’s light and commuter rail system provides new travel opportunities for area residents, yet many barriers prevent access to the region’s rail system. Local improvements such as sidewalk repair or new developments at stations can help solve regional mobility constraints by providing more transportation alternatives.

Rail transportation in the Dallas-Fort Worth area is provided by Dallas Area Rapid Transit (DART) and the Fort Worth Transportation Authority (The T). DART operates the light rail transit (LRT) system recognizable by its electric overhead wires. DART and The T cooperatively operate the Trinity Railway Express (TRE), a commuter train with a traditional locomotive engine. On an average weekday, the system has:

- 43,000 passengers riding light rail
- 7,500 passengers riding commuter rail
- 78 percent of all transit riders first boarding the system as pedestrians.

Service plans call for expanding services in the region. Rail will help serve the region’s growing population (8.4 million by 2030), by providing reliable service, reducing automobile congestion, and decreasing air polluting emissions. The rail solution is part of the clean air transportation strategy that our region is committed to implementing.

Partners from across the region are cooperating to promote usage of the rail system. Providing safe, convenient access, and complementary land uses around these stations is vital to the success of the rail system. Access comes in a variety of forms: walking, bicycling, bus, and private vehicle. Different land uses can hinder or promote access to rail stations. This report addresses access to rail in seven sections: Regional Rail History, Needs Assessment Study, Bicycle and Pedestrian Access, Vehicle Access and Parking, Transit Supportive Land Use, Implementation Strategies, and Success Stories.

Bicycle racks at the CentrePort Rail Station provide a secure and visible parking area for transit riders accessing the station by bicycle.
Streetcar and Trolley System

Streetcars and trolleys were intra-city transit cars powered by electric lines, small steam engines, or other motors. Through the years, many Texas cities, large and small, have been served by one form of street car or another: horse and mule-drawn, steam powered, electric powered, or motor powered. Dallas acquired its first mule-drawn streetcars around 1871. Electrification of streetcar lines in Texas began in the 1890s. Both Dallas and Fort Worth were once served by extensive streetcar and trolley systems. These lines provided service to the downtown areas of Fort Worth and Dallas as well as the surrounding streetcar neighborhoods. Examples of streetcar neighborhoods in Dallas and Fort Worth include Uptown, the Cedars, Kessler Park, Swiss Avenue, Mistletoe Heights, Fairmont, and Arlington Heights. The Cities of Denton and McKinney were also once served by trolley systems in the early 20th Century. The lines provided service from the town center to the nearby residential areas of these rural communities. Many of the local streetcar lines were in decline by the mid-to-late 1920s because of financial difficulties and were shut down or substituted with bus service by the early 1930s. The only remaining trolley system still in operation is the McKinney Avenue Trolley in Dallas. Operating on tracks rediscovered during a road repaving project, the McKinney Avenue Trolley runs from the north side of downtown Dallas along McKinney Avenue to the Cityplace Light Rail Station.

The Impact of Historic Streetcar and Interurban Development

<table>
<thead>
<tr>
<th>1995 Average Vehicle Miles of Travel Per Household</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic Streetcar Neighborhoods in Dallas, Fort Worth, Denton, and McKinney</td>
</tr>
<tr>
<td>Growth Areas in the Metroplex</td>
</tr>
<tr>
<td>68.56 VMT/HH</td>
</tr>
<tr>
<td>25.18 VMT/HH</td>
</tr>
</tbody>
</table>

Block Structure and Historic Rail Development Patterns

- Trolley neighborhoods were designed to encourage pedestrians to use the trolley system.
- Streets were laid out in grid patterns.
- Short blocks were designed for walking.
- Walkable downtowns and commercial areas served by trolleys or interurban rail became a central part of a town’s personality.
- People living in old trolley neighborhoods are able, even today, to drive less, walk more, and access transit easier.
Interurban Rail System
The first electric interurban line was built between Sherman and Denison in 1900. By 1924, the railway served 33 cities on lines running from Denison to Waco and reached Dallas, Fort Worth, Denton, Cleburne, Terrell, and Corsicana.

A number of different rail companies operated in North Central Texas, often merging and changing ownership several times. The primary interurban systems, with a combined network of about 365 miles of rail, were the:

- Northern Texas Traction Company,
- Texas Electric Railway Company,
- Texas Interurban Railway Company, and
- Tarrant County Traction Company.

Interurbans, at first merely rural extensions of city streetcar lines, were electric powered trains that stretched out to link urban centers, and offered fast, frequent, clean, and inexpensive passenger service.

The Dallas-Fort Worth route was known as the “Crimson Limited.” During its 37 years of operation, this luxurious line carried the greatest number of passengers of any electric railway in the Southwest until service was terminated in 1939. The last interurban ran December 31, 1948, from McKinney to Dallas.
Needs Assessment Study
From August 2000 to June 2002, NCTCOG staff catalogued needed bicycle and pedestrian access improvements around 60 existing and programmed rail stations. These recommendations include on-site improvements to the actual station site and off-site improvements to the surrounding neighborhood.

Barriers to Rail Ridership
- Travel time to rail station
- Limited parking at a station
- Limited bicycle and pedestrian access to a station
- Lack of a destination along the rail line
- Limited pedestrian, bicycle, or shuttle access at a destination station

Keys to Increasing Rail Ridership
- Preserving or developing shorter pedestrian-friendly blocks
- Increasing density at stations
- Mixing different land uses at stations
- Managing parking at stations
- Providing bicycle and pedestrian facilities

For directions to stations and service schedules, visit www.DART.org or www.the-T.com
Bicycle and Pedestrian Access

Needs Assessment Methodology

There are three major sources for the facility recommendations of the Needs Assessment Study:

1) Existing local government plans and proposed projects;
2) Field work conducted by NCTCOG staff in coordination with DART, The T, and local governments; and
3) Public comments received during the course of the study.

Well-designed bicycle and pedestrian facilities should allow safe and efficient access to board trains, enter or exit the station site, and reach destinations around the station. The table below summarizes the efforts for each category of bicycle and pedestrian facilities evaluated. The total cost identified is $192 million.

Needs Assessment Research and Findings Summary

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>RESEARCH</th>
<th>FINDINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Station Facilities (lockers, covered bicycle racks, sidewalks, signs)</td>
<td>Items inventoried included sidewalks, bicycle parking, and directional signing. Sidewalk placement on the station property was reviewed for on-site usefulness and connectivity to adjacent properties. The provision and proper placement of bicycle lockers and racks was also studied. The need for directional signs at the station to sort out bicycle, pedestrian, auto, and bus traffic was also evaluated.</td>
<td>Many existing stations are auto-oriented. These could benefit from more direct routing through the parking lot and driveways to improve pedestrian safety. Bicycle parking recommendations include providing additional parking, moving the bicycle parking closer to the station platform, and providing better signage to inform users of its presence. Developing pedestrian-oriented land use on the station site is a necessary next step for these stations.</td>
</tr>
<tr>
<td>Off-Station Sidewalks (crosswalks, curb cuts, pedestrian signals)</td>
<td>Americans will walk 5-to-10 minutes to any destination. Thus, for the sidewalk inventory, an area within roughly one-half mile of each station was studied and the presence or absence of sidewalks was noted. If a sidewalk was in poor condition and deemed unusable it was inventoried as missing. Americans with Disabilities Act standard curb cuts and pedestrian traffic signals were also catalogued.</td>
<td>Of the nearly 1,200 miles surveyed, 782 miles contained sidewalks, while 405 miles contained no sidewalks. The coverage varied from 100 percent to 20 percent of needed sidewalks. The cost of sidewalk-related improvements inventoried totals $78 million.</td>
</tr>
<tr>
<td>Off-Station On-Street (signed on-street bicycle routes)</td>
<td>A one-mile study area around each station was established for reviewing on-street bicycle access. Staff bicycled streets to determine if they would be appropriate on-street routes. A few cities within the study area have existing or planned on-street bicycle routes.</td>
<td>The region has some on-street bicycle routes coordinated with rail stations, but many modifications and additions are necessary to properly direct on-street bicyclists to stations. A total of 85 miles of new or modified on-street bicycle routes were recommended to guide bicyclists to stations. These improvements total over $2 million.</td>
</tr>
<tr>
<td>Off-Station Off-Street (Veloweb, trails, pedestrian portals)</td>
<td>Potential off-street trails were studied within a one-mile area of the station. The Veloweb, which is the regional system of off-street trails designed for bicycle commuters, was key to this analysis. Sections of the Veloweb within the one-mile station study area were identified in the study. In some instances, other trails passed close enough to the station to warrant a connection to the station.</td>
<td>Seventy-seven miles of off-street trails were recommended. The majority of these follow Veloweb alignments in the vicinity of the stations. The remaining off-street recommendations follow rail, utility, or other rights-of-way to connect the stations to the surrounding neighborhoods. These improvements total over $111 million.</td>
</tr>
</tbody>
</table>
Needs Assessment Maps
A map similar to the one shown below for each of the 60 stations in the study is available at www dfw info.com/trans/bikeped/rail_access.

LEDBETTER RAIL STATION

Sidewalk: A standard 5-foot-wide sidewalk.
Greenwalk: An extra wide, 12-foot-wide sidewalk.
On-Street Routes: Bicycle system that uses the roadway network with signs and/or pavement markings.
Off-Street Trails: Bicycle and pedestrian trails that are a minimum of 12-feet-wide and are in rights-of-way separated from automobile traffic.
Existing: The facility is on the ground and currently usable.
Funded: The facility is awaiting construction.
Recommended: Missing sidewalks and potential facilities identified by NCTCOG field work, local planning initiatives, and projects submitted but not funded in past Calls for Projects.
Vehicle Access and Parking

Thousands of Metroplex residents drive to a rail station each day, creating a need for parking. Many more residents ride buses or other transit services to a rail station, creating a need for quick and efficient transfers. Meeting these needs is key to keeping these customers. These needs must be balanced with transit-oriented development opportunities that allow pedestrians to move directly from the station to an activity.

Bus Service

Bus service in this region is provided by the two transportation authorities, DART and The T. DART provides service to the City of Dallas and 12 member communities while The T provides service to Fort Worth, and three member communities. The efficient integration of the existing bus service with the rail system is important in increasing ridership and mobility while reducing Vehicle Miles Traveled (VMT). Both transportation authorities have recognized this and have rerouted existing bus routes and initiated new routes to provide additional access to the rail stations. Express and trolley-bus circulator services were also set up to provide rail access to and from downtown areas and major employment centers. By providing service to areas not directly located next to a rail station, local bus service offers people the opportunity to leave their vehicles at home and make their journey completely by transit.

Parking at Rail Stations

Changing travel behavior can be a difficult task. To encourage people to make the switch from the private automobile to rail, easy access to parking is important. Combining the ease of transit with the convenience of the automobile is a necessary step toward reducing overall VMT. VMT is initially reduced with shorter vehicle trips. Instead of driving for the entire work trip, commuters may drive only a short distance to a local rail station and ride rail to complete their journey to work. Over time, some members of this group may switch to walking, cycling, or taking a bus to the rail station instead of driving. For commuters underserved by bus service or outside the transit area, parking at a rail station allows them to become part of the transit solution to our region’s air quality problem. For this group, parking needs to be clear and easily accessible.

Efficient bus access brings transfer passengers to and from rail stations, supports rail ridership, reduces bus traffic on the roadway system, and shortens transit travel times.

LIGHT AND COMMUTER RAIL STATION PARKING

<table>
<thead>
<tr>
<th>DART/TRE Stations Opened by July 2002</th>
<th>Regular</th>
<th>Handicapped</th>
<th>Passenger Drop-off</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,979</td>
<td>237</td>
<td>258</td>
</tr>
</tbody>
</table>
Parking as a Transitional Land Use

Parking lots at rail stations also serve as a transitional land use. Certain land uses complement rail transportation. Higher density, mixed-use developments provide housing, commercial, and employment services in a pedestrian designed development oriented towards the transit station. Constructing a parking lot to serve the rail station secures the land immediately around the station until the market is ripe for development. It also prevents incompatible land uses from locating next to the station.

The layout of the parking lot itself is also important for future transit-oriented development. With proper design of the internal street system and placement of the parking areas, a pedestrian-friendly grid street pattern can be put in place. When the time is right for redevelopment, the parking lot will have been configured in a way that promotes walking through a street system that dictates block size and building location. Structured parking will also provide parking for transit riders and patrons of the new development. The table below summarizes the 1995 land use characteristics within one-half mile of all 60 stations operational by 2008.

LAND-USE CHARACTERISTICS NEAR RAIL STATIONS OPENING BY 2008
Transit Supportive Land Use
The key in walking or bicycling to transit stations lies in the actual places surrounding the station. These include site-specific issues such as the density of the surrounding area, the overall design of the development, the mix of uses, timing, as well as market forces. To take full advantage of the regional transit system, complementary land uses around rail stations are necessary. Transit–oriented development with a mixture of land uses will increase ridership by placing people and jobs within close proximity to the rail stations. Some communities are already altering their station area land uses before the station becomes operational.

Density Around Rail Stations
High density around transit stations promotes ridership and fosters economic development. To rely primarily on transit services, residents must be able to walk or bike to a reasonable number of destinations. When designing residences for a high-density development, there are alternatives to the standard apartment complexes, such as townhouses, zero-lot line homes, assisted living housing, and mid-rise apartments.

Employment options are also varied including retail, office, and entertainment venues. A benchmark for creating this type of development may include minimum density measured in floor-to-area ratios or units per acre. Another benchmark would be requiring the development to be vertically mixed to increase density, create diversity, and promote pedestrian travel.

Urban Design
Urban design creates a unique sense of place and defines location by including the neighborhood around the station and incorporating interesting facades, wide sidewalks, landscaping, public space, and buildings that front the sidewalk to create visual interests and meeting places for pedestrians. An important aspect of urban design at a transit station is that it should be exclusively pedestrian oriented. Sidewalks and other pedestrian facilities should cater to pedestrian needs by being properly placed and designed to promote comfortable movement from station to development, and from development to station. Automobile parking and bus interfaces at transit stations discourage walking and bicycling to stations.

Problems caused by having vast parking lots or obtrusive parking garages can be overcome through good design. Parking areas can be tucked behind buildings to maintain a cohesive unobstructed pedestrian environment. Parking garages can be blended in with the surrounding buildings by incorporating ground floor retail into the design of the structure. Over time, excessive parking at mixed-use transit centers may be eliminated as densities increase and more people use transit to access the site.
Mixed-Use Development
Mixing the uses in a development allows people to walk or bike to any number of locations along the rail system or at a rail station. Vertical mixing of uses, such as ground floor retail, greatly enhances pedestrian opportunities by providing services the residents require within a relatively compact walkable environment.

The picture at the bottom left is an example of a vertically mixed neighborhood in the Uptown area of Dallas. This development combines ground floor commercial and retail uses with residences on the upper floors. A key to promoting more pedestrian activity is to provide safe and direct connections between compatible land uses. It is important to have good urban design in order to create cohesion within an area and minimize vacant areas that could become a no-man's land devoid of any activity.

Timing
Timing is crucial when creating well designed mixed-use developments that complement existing or future transit stations. When development occurs in advance of a rail station, transit-oriented development standards still need to apply. Planning ahead of time helps ensure the development will be pedestrian oriented when the future station opens.

For example, the City of Plano is working in conjunction with a private developer to create a mixed-use development adjacent to the downtown Plano rail station which opened in late 2002. This station will act as a focal point for downtown, creating enhanced pedestrian mobility to the historic main street and the rest of downtown Plano. Similarly, when rail stations are opened in advance of development or redevelopment, the station site should maximize potential development opportunities.

Market Forces
Public/private partnerships for developing walkable neighborhoods around transit stations have a track record of success. Cities can work with developers to create a successful project that establishes a distinct sense of place and location identity for their community that targets a specific but growing market. The market for transit-oriented development housing includes the growing demographics of empty-nesters, retirees, young professionals, and single-income families. Individuals in these groups are looking for an alternative from the residential areas separated from retail and commercial activity.
Implementation Strategies
Making small-scale improvements to sidewalks, trails, and bicycle routes together with land-use changes such as mixing uses, increasing densities, managing parking, and building pedestrian-friendly blocks at rail stations can improve air quality by increasing the rate of walking and bicycling to rail. The key concept in the partnership is capturing the value of the rail station. For the private sector, the value of the stations is in establishing a brand name identity and securing a flow of customers. For the public sector, the value of the station is in vehicles being removed from the roadway. These goals are both served by transit-oriented developments with well-designed bicycle and pedestrian facilities.

Station Design Recommendations
- Place building fronts/entrances on the platform with parking set behind.
- Locate bicycle parking close to the platform and mark it clearly.
- Provide separated sidewalks and walkways to route pedestrians through station parking.
- Provide shelter, concessions, and other amenities on the platform.
- Shelter pedestrians moving through the site and to the platform.
- Build and sign direct through-routes to major off-site pedestrian destinations.
- Construct queuing platforms for pedestrians required to wait at traffic lights when leaving the station area.

The ITC Terminal for the Trinity Railway Express provides good pedestrian connections from the station to downtown Fort Worth.

Benefits of Increasing Bicycle and Pedestrian Access to Rail
- Mixing land uses increases the number of trip types accessible by rail.
- Increasing densities increases the frequency of pedestrian, bicycle, or rail trips.
- Improving sidewalks and other facilities extends the area available to rail patrons.
- Increasing access through land-use and facility changes increases bike/pedestrian trips, safety, and mode share.
- Increasing rates of walking, bicycling, and rail usage decreases roadway congestion and improves air quality.
PARTNERSHIPS IN ACTION

<table>
<thead>
<tr>
<th>PARTNER</th>
<th>ROLE</th>
<th>SUCCESSES</th>
<th>NEXT STEPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Sector</td>
<td>Transit-oriented developments
Sidewalks, crosswalks, and other facilities in new developments and redevelopments close to rail stations</td>
<td>South Side on Lamar, Mockingbird Station and other DART light rail related developments combine for over $1 billion in private sector investments on the $900 million starter system.</td>
<td>Identify market opportunities.
Draft site plans with pedestrian, bicycle, and transit orientation and facilities.
Build bicycle and pedestrian facilities related to site development.</td>
</tr>
<tr>
<td>Local Governments</td>
<td>Facility construction and maintenance
Planning and zoning regulations</td>
<td>Fort Worth, Burleson, Plano, and other cities adopt mixed-use, high-density zoning regulations.
Dallas and other cities create Planned Developments (PDs), Tax Increment Finance Districts (TIFs), Business Improvement Districts (BIDs), and Municipal Management Districts (MMDs) to support infill, transit-oriented developments.</td>
<td>Endorse elements of the Bicycle and Pedestrian Access to Rail Needs Assessment.
Identify related improvements for inclusion in Capital Improvement Plans.
Define station development areas.
Establish planning, zoning, and subdivision regulations tailored to transit-oriented development, including minimum densities around stations.
Require developers to provide specific bicycle and pedestrian facilities.</td>
</tr>
<tr>
<td>Transit Agencies</td>
<td>Rail service
Station access issues, station bicycle parking
Development agreements with the private sector</td>
<td>Customer satisfaction and rail use increased.
Station area development successfully promoted.
Bicycle parking at station sites permitted.</td>
<td>Adopt system plans that include bicycle and pedestrian access issues.
Streamline bicycle parking and carry-on policies.
Prioritize and fund needed on-site improvements.
Provide paved waiting areas at all transit stops.</td>
</tr>
<tr>
<td>North Central Texas Council of Governments</td>
<td>Regional planning, programming, and coordination</td>
<td>$40.8 million Joint Venture program provides funding to 19 projects and the study of additional rail corridors. Regional long-range plan supports sustainable development and identifies $960 million for bicycle and pedestrian facilities. Regional Transportation Council policy limits Transportation Enhancement applications to mobility projects.</td>
<td>Incorporate elements of the Needs Assessment into Mobility 2030 and corridor studies.
Identify State and federal funding sources.
Focus funding under the Transit Enhancement Program to mobility projects.</td>
</tr>
<tr>
<td>Texas Department of Transportation</td>
<td>Improvements related to the State system (over $2 million identified in the Needs Assessment)</td>
<td>Central Expressway reconstruction accommodates the KATY trail extension to the Mockingbird Station.
TxDOT corridor study projects coordinate with rail and veloweb planning.</td>
<td>Include pedestrian and bicycle improvements on State system roadway projects proximate to rail stations.
Streamline implementation of federally funded bicycle and pedestrian improvements.</td>
</tr>
</tbody>
</table>
Success Stories

Nearly $1 billion worth of investment around DART’s $900 million light rail starter system was made through 2002. Private developers are constructing mixed-use developments around existing stations while local governments are conducting transit-oriented land-use studies around stations scheduled to open within the next few years. Local governments and transit agencies are also identifying possible improvements to enhance bicycle and pedestrian access. With more than 200,000 people a day expected to use transit by 2025, investments made now will have benefits for transit riders in years to come.

A lack of pedestrian connections to this light rail station caused residents to make their own connections, made visible by the volunteer paths and hole in the landscaping leading to the station.

In response to customer needs, DART constructed a heavily used sidewalk from the station to the neighboring community.
NCTCOG Executive Board 2002-2003

President
James O’Neal
Mayor Pro Tem, City of Lancaster

Vice President
Jack Hatchell
Commissioner, Collin County

Secretary-Treasurer
Bob Phelps
Mayor, City of Farmers Branch

Past President
Mike Cantrell
Commissioner, Dallas County

Director
Jim Jackson
Commissioner, Dallas County

Director
Tom Vandergriff
County Judge, Tarrant County

Director
Alan Wayne
Councilmember, City of Dallas

Director
Wendy Davis
Councilmember, City of Fort Worth

Director
Wayne Gent
County Judge, Kaufman County

Director
John Heiman, Jr.
Councilmember, City of Mesquite

Director
Euline Brock
Mayor, City of Denton

Director
Paula Baucum
Councilmember, City of Midlothian

General Counsel
Jerry Gilmore

Executive Director
R. Michael Eastland

Regional Transportation Council 2003

John Murphy, Chair
Mayor Pro Tem, City of Richardson

B. Glen Whitley, Vice Chair
Commissioner, Tarrant County

Jack Hatchell, Secretary
Commissioner, Collin County

Ron Brown
Commissioner, Ellis County

Mark Burroughs
Mayor Pro Tem, City of Denton

Maribel Chavez, P.E.
District Engineer
Texas Department of Transportation, Fort Worth District

Wendy Davis
Councilmember, City of Fort Worth

Bob Day
Mayor, City of Garland

Don Dozier
Mayor, City of McKinney

Harry Englert
Councilmember, City of Grand Prairie

Pat Evans
Mayor, City of Plano

Lois Finkelman
Councilmember, City of Dallas

Sandy Greyson
Councilmember, City of Dallas

Roger Harmon
County Judge, Johnson County

Becky Haskin
Councilmember, City of Fort Worth

John Heiman, Jr.
Councilmember, City of Mesquite

Mark Housewright
Councilmember, City of Dallas

Gregory Hughes
Board Member
Fort Worth Transportation Authority

Robert James
Citizen Representative, City of Dallas

Margaret Keiher
County Judge, Dallas County

Linda Koo
Board Member, Dallas Area Rapid Transit

Kenneth Mayfield
Commissioner, Dallas County

Steve McCoilum
Councilmember, City of Arlington

Jack Miller
Board Member, North Texas Tollway Authority

Jay Nelson, P.E.
District Engineer
Texas Department of Transportation, Dallas District

Mike Nowels
Councilmember, City of Lewisville

Joe Putnam
Mayor, City of Irving

Pat Remington
Councilmember, City of Arlington

Chuck Silcox
Councilmember, City of Fort Worth

Grady Smilhey
Mayor Pro Tem, City of Duncanville

Mark Stokes
Mayor, City of Carrollton

John Tatum
Citizen Representative, City of Dallas

Maxine Thornton-Reese
Councilmember, City of Dallas

Oscar Trevino
Mayor, City of North Richland Hills

Carl Tyson
Mayor Pro Tem, City of Euless

Marl VanRavenswaay
Commissioner, Tarrant County

Max Wells
Board Member
Dallas/Fort Worth International Airport

Cynthia White
Commissioner, Denton County

Mark Wright
Mayor, City of Kennedale

Michael Morris, P.E.
Transportation Director, NCTCOG

Bicycle and Pedestrian Transportation Task Force

P. M. Summer
Chair

Surface Transportation Technical Committee
Beth Ramirez
Chair

Contributing Staff

NCTCOG Staff

Michael Morris, P.E.
Director of Transportation

Dan Kessler
Assistant Director of Transportation

Mike Sims, AICP
Principal Transportation Planner

Jared White
Transportation Planner II

Rachel Harshman
Transportation Planner I

Ying Cheng
Urban Planner I

Kristy Libotte Keener
Graphic Coordinator, Public Affairs
What Is NCTCOG?

The North Central Texas Council of Governments (NCTCOG) is a voluntary association of local governments within the 16-county North Central Texas region. The agency was established in 1966 to assist local governments in planning for common needs, cooperating for mutual benefit, and coordinating for sound regional development. North Central Texas is a 16-county region with a population of 5.6 million and an area of approximately 12,800 square miles. NCTCOG has 230 member governments, including all 16 counties, 164 cities, 23 independent school districts, and 27 special districts.

Since 1974, NCTCOG has served as the Metropolitan Planning Organization (MPO) for transportation in the Dallas-Fort Worth Metropolitan Area. The Regional Transportation Council is the policy body for the Metropolitan Planning Organization. The Regional Transportation Council consists of 39 members, predominantly local elected officials, overseeing the regional transportation planning process. NCTCOG's Department of Transportation is responsible for support and staff assistance to the Regional Transportation Council and its technical committees, which comprise the MPO policy-making structure.

We would like your comments...

If you have questions or comments regarding the transportation and air quality programs of the North Central Texas Council of Governments and the Regional Transportation Council or need additional information, please contact the NCTCOG Transportation Department at (817) 695-9240, by fax at (817) 640-3028, via e-mail: transinfo@nctcog.dst.tx.us, or visit our website at www.nctcog.dst.tx.us/trans.

Regional Mobility Initiatives Issues

<table>
<thead>
<tr>
<th>Topic</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Transportation Management</td>
<td>March 1996</td>
</tr>
<tr>
<td>Air Quality</td>
<td>July 1996</td>
</tr>
<tr>
<td>Traffic Congestion</td>
<td>October 1996</td>
</tr>
<tr>
<td>Multimodal Solutions in the North Central Corridor</td>
<td>July 1997</td>
</tr>
<tr>
<td>Toll Roads</td>
<td>February 1998</td>
</tr>
<tr>
<td>Major Investment Studies</td>
<td>August 1998</td>
</tr>
<tr>
<td>The Transportation Equity Act for the 21st Century</td>
<td>October 1998</td>
</tr>
<tr>
<td>High Occupancy Vehicle (HOV) Lanes</td>
<td>December 1998</td>
</tr>
<tr>
<td>Travel Demand Forecasting Procedures</td>
<td>June 1999</td>
</tr>
<tr>
<td>Commuter Traffic</td>
<td>December 2000</td>
</tr>
<tr>
<td>Pedestrian Transportation</td>
<td>August 2002</td>
</tr>
<tr>
<td>Metropolitan Planning Organization</td>
<td>November 2002</td>
</tr>
</tbody>
</table>

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the views or policies of the Federal Highway Administration, the Federal Transit Administration, or the Texas Department of Transportation. This document was prepared in cooperation with the Texas Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration, and Federal Transit Administration.